Einstein was RIGHT.
SCOPERTE LE ONDE GRAVITAZIONALI
Einstein aveva ragione
A un secolo dalla sua previsione, i fisici delle collaborazioni internazionali Ligo e Virgo, cui l’Italia partecipa con l’Infn, hanno annunciato la scoperta diretta delle onde gravitazionali, uno degli ultimi fenomeni della relatività generale di Einstein ancora in attesa del sigillo dell’evidenza empirica. L’annuncio è stato dato in una conferenza stampa congiunta, che si è tenuta in contemporanea a Cascina (nei pressi di Pisa), sede dell’interferometro Virgo, e a Washington, dopo una lunga analisi dei dati che ha portato alla pubblicazione del risultato sulla prestigiosa rivista Physical Review Letters.
Mentre è probabilmente noto a tutti che l’accurata conoscenza della posizione dell’autobus è garantita dall’ormai diffusissimo sistema di posizionamento globale, il Gps (Global Positioning System), pochi però sanno che senza le correzioni introdotte proprio dalla teoria della relatività il Gps non sarebbe in grado di dirmi se l’autobus è dietro l’angolo, oppure a Berlino, a 35 km da qui.
La teoria della relatività è in realtà ben più che un successo per il sistema di trasporto urbano moderno e rappresenta a buon diritto una delle più importanti teorie mai formulate. Essa è una colonna portante della fisica moderna, senza la quale gran parte delle osservazioni provenienti dalla fisica delle particelle, dall’astrofisica e dalla cosmologia risulterebbero inspiegabili. Non pretendo certo di spiegare ora una delle più complesse teorie note in fisica matematica, ma è sicuramente utile ricordare che le equazioni di Einstein ne sintetizzano in un’elegante compattezza l’essenza stessa, predicendo l’equivalenza massa-energia e la curvatura dello spaziotempo. In altre parole, le equazioni di Einstein affermano che massa ed energia non possono essere considerate entità distinte. In quantità equivalenti, infatti, esse producono esattamente lo stesso effetto: una curvatura nella struttura dello spaziotempo che si manifesta attraverso la forza di gravità.
È il campo gravitazionale.
È sufficiente pensare a un lenzuolo teso ad una certa altezza da terra. In assenza di pesi esso appare perfettamente piatto; tuttavia, se vi appoggiamo un oggetto, ad esempio una palla da biliardo, il lenzuolo si incurverà nelle sue vicinanze e qualsiasi altro corpo meno massiccio tenderà a cadere nella buca così prodotta, o a ruotarvi intorno.
La relatività generale ha superato nel corso degli ultimi novanta anni una grande quantità di verifiche sperimentali ed è ancora oggi la teoria della gravitazione che meglio di qualsiasi altra è in accordo con le osservazioni astronomiche e con gli esperimenti condotti in laboratorio. Sembrerebbe un successo su tutta la linea, e in gran parte lo è. Tuttavia, c’è un aspetto della teoria che finora si è sottratto alla verifica sperimentale, e pertanto rimane un mistero, quello delle onde gravitazionali. Se da una parte la teoria ne predice in maniera abbastanza diretta e semplice l’esistenza, dall’altra però nessun esperimento, da quaranta anni a questa parte, è mai stato in grado di rivelarle direttamente. Se la teoria della relatività generale è corretta, come la gran parte delle comunità dei fisici sostiene, le onde gravitazionali non possono non esistere e devono poter essere rivelate in modo diretto, e non solo attraverso effetti secondari che potrebbero essere attribuiti anche a cause diverse.
Ma cosa sono esattamente le onde gravitazionali? Concretamente, esse rappresentano la propagazione alla velocità della luce di deboli increspature nella curvatura nello spaziotempo (le piccole pieghe, nell’esempio del lenzuolo). Da un punto di vista più matematico, però, le onde gravitazionali nascono come soluzioni delle equazioni di Einstein in campi gravitazionali deboli, cioè in lenzuoli “quasi piatti”. In questo senso la teoria le definisce come “soluzioni delle equazioni di Einstein”, cioè relative a piccole curvature dello spaziotempo, esattamente come le onde elettromagnetiche sono soluzioni particolari di altre equazioni, le equazioni di Maxwell, e le onde su una superficie liquida sono soluzioni delle equazioni dell’idrodinamica. In tutti questi casi, le onde sono solo delle piccole perturbazioni che si allontanano dalla sorgente che li ha prodotti, e sono di tipo trasverso, ossia producono cambiamenti nella direzione perpendicolare a quella in cui si propagano. Consideriamo il caso, sicuramente più vicino alla nostra esperienza comune, di uno stagno sulla cui superficie stia inizialmente galleggiando un tappo di sughero. La propagazione delle onde d’acqua perturberebbe il tappo e, nel caso di onde di piccola ampiezza, questo comincerebbe a oscillare con moto periodico lungo la verticale, perpendicolarmente alla direzione di propagazione dell’onda. In maniera del tutto analoga, le onde gravitazionali che si propagano nello spaziotempo lo perturbano modificandone localmente il valore della curvatura (quindi del campo gravitazionale). Durante la loro propagazione, le onde gravitazionali producono così delle forze di marea che fanno variare la posizione degli oggetti, in particolare di quelli che non sono soggetti a forze esterne, esattamente come le forze mareali esercitate dalla Luna sulla Terra inducono lo spostamento delle superfici liquide sul pianeta.
In generale, le onde gravitazionali sono caratterizzate da due gradi di polarizzazione (il piano sul quale oscilla il tappo di sughero, nell’esempio dello stagno) lungo due direzioni poste a 45 gradi l’una dall’altra. Ognuno dei due induce una forza mareale di tipo “quadrupolare”, ossia di compressione in una direzione e di stiracchiamento in quella a essa perpendicolare
Per nostra fortuna le onde gravitazionali che giungono sulla Terra non producono deformazioni apprezzabili; esse, però, sono anche talmente deboli che tutti i dispositivi finora costruiti non sono ancora stati in grado di rivelarle!
Ma come sono generate le onde gravitazionali?
In realtà esse sono prodotte in continuazione ogni volta che una massa-energia è messa in movimento, quindi anche adesso, nell’atto di sfogliare questo fascicolo. Tuttavia, l’ampiezza di queste onde sulla Terra è in generale infinitesimale onde tali da essere rivelate possono essere generate solo da enormi masse in movimento, a velocità vicine a quella della luce. Chiaramente sulla Terra non c’è nulla che soddisfi queste condizioni ed è necessario rivolgersi a sorgenti di tipo astrofisico per poter sperare di avere un segnale sufficientemente intenso da essere rivelato. Gli oggetti astrofisici in grado di produrre onde gravitazionali rivelabili devono essere estremamente massicci e, per potersi muovere ad alta velocità, devono essere anche molto compatti. Candidati ideali di questo tipo sonoi buchi neri e le stelle di neutroni, in prossimità dei quali la curvatura dello spazio tempo raggiunge i più alti valori possibili. La radiazione gravitazionale, inoltre, è particolarmente intensa quando è emessa da un sistema binario di stelle di neutroni, o di buchi neri, che muovendosi a spirale in direzione del comune centro di massa rilasciano enormi quantità di energia e momento angolare (una quantità che dipende anche dalla velocità di rotazione).
sistemi binari di oggetti compatti sono le sorgenti ideali e maggiormente ricercate dai moderni rivelatori e il tipo di radiazione emesso può essere illustrato con una semplice analogia meccanica. Si pensi, infatti, a una coppia di barre in rotazione in uno stagno (vd. fig. c): le barre rotanti rappresentano il sistema di oggetti compatti e le onde dello stagno sono associate alle increspature della curvatura dello spazio tempo, cioè alle onde gravitazionali.
Spiraleggiando verso il bordo dello stagno, le onde portano con sé energia e momento angolare e diminuiscono in ampiezza, proprio come avviene per i sistemi binari.
Sorgenti di questo tipo emettono sotto forma di onde gravitazionali quantità di energia pari a qualche percento della loro massa. In pratica,in un intervallo di tempo di appena qualche millisecondo, sprigionano l’energia che centinaia di stelle simili al nostro Sole emettono in 10 miliardi d’anni, cioè in tutta la loro esistenza. Esse sono mediamente a grosse distanze dalla Terra e di conseguenza l’ampiezza che giunge a noi è estremamente piccola. Per avere un’idea, basti pensare che un sistema binario di buchi neri di massa uguale al nostro Sole, a una distanza di seicento milioni di anni luce, produce onde gravitazionali con un’ampiezza di una parte su mille miliardi di miliardi: prendendo come riferimento una lunghezza pari alla distanza tra la Terra e il Sole, la deformazione causata dall’onda gravitazionale sarebbe delle dimensioni di un atomo. Misure di questo tipo sono chiaramente al limite della nostra tecnologia e la rivelazione di onde gravitazionali rappresenta quindi una vera a propria sfida, non solo per la fisica sperimentale ma, in modo equivalente, anche per quella teorica.
Le onde attese, infatti, produrrebbero un segnale confrontabile con il rumore di fondo dei rivelatori, rappresentato dall’inevitabile contributo dell’ambiente, e quindi teoricamente impossibile da rivelare. Tuttavia, se il segnale fosse noto a priori, questo potrebbe essere “estratto” dal rumore di fondo tramite una tecnica chiamata matched filters che è abbastanza semplice da comprendere. Si immagini di essere all’ascolto di una trasmissione radiofonica estremamente disturbata ma in cui è comunque possibile udire e distinguere occasionalmente delle parole. Ebbene, se a noi fossero note alcune informazioni di base (come ad esempio la lingua usata, l’argomento discusso, il numero delle voci,e così via) il nostro cervello sarebbe in grado di“estrarre” il segnale dal rumore e ricostruire così, quasi interamente, quanto trasmesso.
Da un punto di vista teorico, quindi, la sfida è quella di predire la forma dell’onda gravitazionale prodotta dalle sorgenti più intense e comuni, al fine di fornire questa informazione ai fisici sperimentali che si occupano di mettere a punto i sistemi per la rivelazione. Sembrerebbe un compito semplice, ma non lo è affatto! La soluzione delle equazioni di Einstein in assenza di approssimazioni e simmetrie, infatti, è estremamente ardua, poiché le stesse equazioni sono molto complesse. A questo va poi aggiunta la necessità di descrivere il moto della materia attraverso le equazioni dell’idrodinamica e della magnetoidrodinamica, raggiungendo un numero di equazioni accoppiate così elevato, che la loro soluzione è possibile solo sfruttando le risorse dei più potenti supercalcolatori.
È certamente utile, a questo punto, spiegare perché sia così importante rivelare le onde gravitazionali. È chiaro che un tale sforzo scientifico e tecnologico non è intrapreso soltanto per dimostrare che Einstein aveva ragione. Accanto a un’ulteriore verifica della teoria della relatività generale, infatti, la rivelazione di onde gravitazionali consentirebbe di aprire una nuova finestra sull’Universo. Dalle onde radio ai raggi gamma, infatti, sono le onde elettromagnetiche a trasportare la maggior parte dell’informazione che oggi riceviamo dal nostro Universo. Esse, però, portano essenzialmente notizie sui dettagli delle sorgenti che le hanno emesse, e molte meno sul comportamento complessivo.
Le onde elettromagnetiche, inoltre, subiscono gli effetti del passaggio nel materiale interposto tra noi e la sorgente, che in parte le assorbe. Le onde gravitazionali, al contrario, si propagano pressoché indisturbate e ci forniscono informazioni sui movimenti globali delle sorgenti, a frequenze che sono assai più basse di quelle delle onde elettromagnetiche. In virtù di questa sorta di “ortogonalità” tra i due tipi di messaggi, l’informazione che sarà registrata attraverso le onde gravitazionali sarà unica e complementare a quella elettromagnetica.
Per queste ragioni, la rivelazione delle onde gravitazionali rappresenta una delle più grandi sfide della fisica moderna, ma offre anche la prospettiva di fornire informazioni che ci sono state finora precluse. Come già successo in passato con l’avvento dell’astronomia a raggi X e di quella gamma, l’astronomia delle onde gravitazionali sarà foriera di grandi scoperte, svelando un Universo che finora è rimasto avvolto nell’oscurità.
by